inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

The solid solution $Na_{0.39}(NH_4)_{1.61}SO_4 \cdot Te(OH)_6$

Lilia Ktari,^a Mohamed Abdelhedi,^{a,b}* Mohamed Dammak,^a Alain Cousson^b and Abdelwaheb Kolsi^a

^aLaboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, 3018 Sfax, Tunisia, and ^bLaboratoire Léon Brillouin, CE Saclay, Bâtiment 563, 91191 Gif-sur-Yvette Cedex, France Correspondence e-mail: m_abdelhedi2002@yahoo.fr

Received 14 December 2007; accepted 31 January 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (S–O) = 0.005 Å; Hatom completeness 60%; disorder in main residue; R factor = 0.032; wR factor = 0.044; data-to-parameter ratio = 6.1.

The title compound, sodium ammonium sulfate-telluric acid (1/1), Na_{0,39}(NH₄)_{1.61}SO₄·Te(OH)₆, is isostructural with other solid solutions in the series $M_{1-x}(NH_4)_xSO_4$ ·Te(OH)₆, where ammonium is partially replaced with an alkali metal (M = K, Rb or Cs). The structure is composed of planes of Te(OH)₆ octahedra alternating with planes of SO₄ tetrahedra. The Na⁺/ NH₄⁺ cations are statistically distributed over the same position and are located between the planes. The structure is stabilized by O-H···O and N-H···O hydrogen bonds between the telluric acid adducts and the O atoms of sulfate groups, and between the ammonium cations and O atoms, respectively. Both Te atoms lie on centres of symmetry.

Related literature

For the sodium end-member of the solid solution series $Na_{1-x}(NH_4)_xSO_4$ ·Te(OH)₆, see: Zilber *et al.* (1980). For the ammonium end-member of the same series, see: Zilber *et al.* (1981). For other solid solutions in the system $M_{1-x}(NH_4)_xSO_4$ ·Te(OH)₆, where ammonium is partially replaced by an alkali metal, see: Dammak *et al.* (2005) for M = Cs; Ktari *et al.* (2002) for M = Rb; and Ktari *et al.* (2004) for M = K. For related literature, see: Prince (1982); Watkin (1994).

Experimental

Crystal data

$Na_{0.39}(NH_4)_{1.61}SO_4 \cdot Te(OH)_6$	$V = 981.26 (19) \text{ Å}^3$
$M_r = 357.22$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 13.690 (1) Å	$\mu = 3.30 \text{ mm}^{-1}$
b = 6.592 (1) Å	$T = 298 { m K}$
c = 11.345 (1) Å	$0.15 \times 0.14 \times 0.10 \text{ mm}$
$\beta = 106.58 \ (1)^{\circ}$	

Data collection

```
Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(MULABS in PLATON; Spek,
2007)
T_{min} = 0.615, T_{max} = 0.719
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.043$ S = 0.93638 reflections 104 parameters 919 measured reflections 849 independent reflections 638 reflections with $I > 3\sigma(I)$ $R_{int} = 0.000$

Table 1

Selected bond lengths (Å).

Te1-O1	1.903 (6)	Na1-O7 ^v	2.978 (7)
Te1-O2	1.905 (4)	$Na1 - O10^{vi}$	3.008 (4)
Te1-O3	1.916 (3)	Na1-O9	3.120 (4)
Te2-O4	1.914 (3)	Na1-O6 ⁱⁱ	3.267 (6)
Te2-O5	1.915 (4)	Na1-O5 ^{vii}	3.278 (5)
Te2-O6	1.904 (5)	Na2-O9	2.938 (5)
S1-O7	1.486 (6)	Na2-O8 ^{vi}	2.966 (4)
S1-O8	1.485 (3)	Na2-O4 ⁱⁱ	3.029 (4)
S1-O9	1.474 (3)	Na2-O10 ^{viii}	3.037 (7)
S1-O10	1.460 (6)	Na2-O2 ^{ix}	3.050 (4)
Na1-O6 ⁱ	2.873 (4)	Na2-O2 ^x	3.063 (5)
Na1-O4 ⁱⁱ	2.937 (6)	Na2-O1 ^{xi}	3.144 (5)
Na1-O5 ⁱⁱⁱ	2.947 (4)	Na2-O3 ^{vii}	3.164 (5)
Na1-O3 ^{iv}	2.950 (4)	Na2-O1 ^{iv}	3.305 (6)

Table 2Hydrogen-bond and short contact geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2···O9 ^{xii}	0.924 (4)	1.787 (4)	2.700 (6)	169.2 (2)
O3−H3···O8 ^{xiii}	0.985 (5)	1.871 (5)	2.799 (7)	155.7 (2)
$O4-H4\cdots O7^{xiv}$	0.937 (3)	1.798 (3)	2.706 (7)	162.4 (2)
$O6-H6\cdots O10^{xiii}$	0.963 (4)	1.706 (4)	2.658 (6)	169.5 (3)
$N1 \cdot \cdot \cdot O6^{i}$			2.873 (4)	
$N1 \cdots O4^{ii}$			2.937 (6)	
$N1 \cdots O5^{iii}$			2.947 (4)	
$N1 \cdots O3^{iv}$			2.950 (4)	
$N1 \cdots O7^{v}$			2.978 (7)	
$N1 \cdots O10^{vi}$			3.008 (4)	
N2···O9			2.938 (5)	
$N2 \cdot \cdot \cdot O8^{vi}$			2.966 (4)	
$N2 \cdots O4^{ii}$			3.029 (4)	
$N2 \cdot \cdot \cdot O10^{viii}$			3.037 (7)	
$N2 \cdot \cdot \cdot O2^{ix}$			3.050 (4)	
$N2{\cdots}O2^x$			3.063 (5)	

Symmetry codes: (i) $-x, y = \frac{3}{2}, -z = \frac{1}{2}$; (ii) x, y = 1, z; (iii) $x, -y = \frac{3}{2}, z = \frac{1}{2}$; (iv) $-x, y = \frac{1}{2}, -z = \frac{1}{2}$; (v) $x, -y = \frac{1}{2}, z = \frac{1}{2}$; (vi) x, y = 1, z; (viii) $x, -y = \frac{1}{2}, z = \frac{1}{2}$; (ix) x = 1, y, z; (x) -x, -y, -z; (xii) $-x, y = \frac{1}{2}, -z = \frac{1}{2}$; (xiii) $-x, y = \frac{3}{2}, -z = \frac{1}{2}$; (xiv) x, y = 2, z.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SHELXS86* (Sheldrick, 2008); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *CRYSTALS*. This project was supported by the French Ministry of Research and New Technologies and the French/Tunisian Twin Committee for University Collaboration.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2171).

References

- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Version 2.1b. Crystal Impact GbR, Bonn, Germany.
- Dammak, M., Ktari, L., Cousson, A. & Mhiri, T. (2005). J. Solid State Chem. 178, 2109–2116.

- Ktari, L., Dammak, M., Hadrich, A., Cousson, A., Nierlich, M., Romain, F. & Mhiri, T. (2004). Solid State Sci. 6, 1393–1401.
- Ktari, L., Dammak, M., Mhiri, T. & Kolsi, A. W. (2002). Phys. Chem. News, 8, 1–8.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2007). PLATON. Utrecht University, The Netherlands.
- Watkin, D. (1994). Acta Cryst. A50, 411-437.
- Zilber, R., Durif, A. & Averbuch-Pouchot, M. T. (1981). Acta Cryst. B37, 650–652.
- Zilber, R., Tordjman, I. & Guitel, J. C. (1980). Acta Cryst. B36, 2741-2743.

supplementary materials

Acta Cryst. (2008). E64, i18-i19 [doi:10.1107/S1600536808003425]

The solid solution Na_{0.39}(NH₄)_{1.61}SO₄·Te(OH)₆

L. Ktari, M. Abdelhedi, M. Dammak, A. Cousson and A. Kolsi

Comment

The studies of a partial cationic substitution on symmetry and physical properties of solid solutions in the series $M_1 - _x(NH_4)_xSO_4$ ·Te(OH)₆ (M = K, Rb and Cs) have been reported in previous communications, *viz*. for K_{0.84}(NH₄)_{1.16}SO₄·Te(OH)₆ (Ktari *et al...*, 2004), Rb_{1.12}(NH₄)_{0.88}SO₄·Te(OH)₆ (Ktari *et al...*, 2002), and Cs_{0.86}(NH₄)_{1.14}SO₄·Te(OH)₆ (Dammak *et al...*, 2005). To continue these studies, we have now investigated the solid solution Na_{0.39}(NH₄)_{1.61}SO₄·Te(OH)₆. This compound is isostructural with the aforementioned phases.

Fig. 1 shows a projection of the structure on the *ab* plane. The structure can be regarded as being built up of planes of Te(OH)₆ octahedra (at x = 0 and 1/2) alternating with planes of SO₄ tetrahedra (at x = 1/4). The statistically disordered Na⁺/NH₄⁺ cations are intercalated between these planes. Both Te atoms are situated on inversion centres and exhibit similar Te(OH)₆ octahedra, with Te—O distances and O—Te—O angles ranging from 1.903 (6) to 1.916 (3) Å, and from 87.6 (2) to 92.4 (2)°, respectively (Fig. 2). In the sodium end-member Na₂SO₄·Te(OH)₆ (Zilber *et al.*, 1980), the Te—O distances range from 1.879 (4) to 1.932 (3) Å, whereas in the ammonium end-member (NH₄)₂SO₄·Te(OH)₆ (Zilber *et al.*, 1981) they vary from 1.874 (3) to 1.944 (3) Å. The SO₄ tetrahedra in the title compound are quite regular with S—O distances between 1.460 (6) and 1.486 (6)Å and O—S—O angles between 108.6 (3) and 110.6 (3)°. In the sodium end-member, the S—O distances are nearly the same (1.461 (5) to 1.497 (5) Å), whilst in the ammonium end-member they spread between 1.373 (11) and 1.565 (8) Å. In the mixed solution the Na/N atoms are 9-coordinate with (Na/N)—O bonds ranging from 2.873 (4) to 3.278 (5)Å for Na₁/N₁ and from 2.938 (5) to 3.305 (6)Å for Na₂/N₂. Thereby every cation is coordinated by three oxygen atoms belonging to SO₄ tetrahedra and by six oxygen atoms belonging to Te(OH)₆ octahedra. The structure of the title compound is stabilized *via* medium-strong O—H···O hydrogen bonds between the Te(OH)₆ octahedra and SO₄ tetrahedra (Fig. 3), and between N—H···O hydrogen bonds between the ammonium cations and various oxygen atoms in the structure (see hydrogen bonding Table).

Experimental

Transparent, colorless single crystals of the title compound were grown from an aqueous solution consisting of a stoichiometric mixture (ratio 1:1.5:0.5) of H_6TeO_6 (Aldrich, 99%) (NH₄)₂SO₄ (Aldrich, 99.99%) and Na₂SO₄ (Aldrich, 99%) after evaporation at room temperature.

Refinement

H atoms of the Te(OH)₆ group were located in an electron density difference map and were refined with O—H distance restraints of 0.95 (2) Å and a common U_{iso} parameter. H atoms of the ammonium groups could not be located and were excluded from the refinement. For the refinement of the occupation factors for N and Na atoms, their sums were restrained to be equal to 1. The highest peak in the final Fourier map is located 0.044 Å from Te2 and the deepest hole 0.43 Å from the same atom.

Figures

Fig. 1. Projection of the crystal structure of the title compound on the *ab* plane.

Fig. 2. A part of the structure of $Na_{0.39}(NH_4)_{1.61}SO_4$ Te(OH)₆, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes:(*a*) –*x* + 1,-*y*, –*z*; (*b*) –*x*, –*y* + 1, –*z*]

Fig. 3. Crystal structure of $Na_{0.39}(NH_4)_{1.61}SO_4$ ·Te(OH)₆ showing hydrogen bonds with dashed lines.

sodium ammonium sulfate-telluric acid (1/1)

Crystal data	
Na _{0.39} (NH ₄) _{1.61} SO ₄ ·Te(OH) ₆	$F_{000} = 678.224$
$M_r = 357.22$	$D_{\rm x} = 2.418 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 919 reflections
<i>a</i> = 13.690 (1) Å	$\theta = 2.7 - 30.1^{\circ}$
b = 6.592 (1) Å	$\mu = 3.30 \text{ mm}^{-1}$
c = 11.345 (1) Å	T = 298 K
$\beta = 106.58 \ (1)^{\circ}$	Parallelepiped, colourless
$V = 981.26 (19) \text{ Å}^3$	$0.15\times0.14\times0.10~mm$
Z = 4	
Data collection	
Nonius KappaCCD diffractometer	638 reflections with $I > 3\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.000$
T = 297 K	$\theta_{\text{max}} = 30.2^{\circ}$
φ scans	$\theta_{\min} = 1.6^{\circ}$

Absorption correction: multi-scan (MULABS in PLATON; Spek, 2007)	$h = -16 \rightarrow 14$
$T_{\min} = 0.615, \ T_{\max} = 0.719$	$k = -7 \rightarrow 7$
919 measured reflections	$l = -5 \rightarrow 5$

849 independent reflections

Ref	finemen	t
Rej	finemen	t

Refinement on F	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.043$	Chebychev polynomial, (Watkin, 1994, <i>Prince</i> , 1982) [weight] = $1.0/[A_0*T_0(x) + A_1*T_1(x) + A_{n-1}]*T_{n-1}(x)$] where A_i are the Chebychev coefficients listed be- low and $x = F/F$ max Method = Robust Weighting (<i>Prince</i> , 1982); W = [weight] * [1-(deltaF/6*sig-maF)^2]^2 A_i are: 0.527 0.367 0.302
<i>S</i> = 0.93	$(\Delta/\sigma)_{\rm max} = 0.0001$
638 reflections	$\Delta \rho_{max} = 0.51 \text{ e} \text{ Å}^{-3}$
104 parameters	$\Delta \rho_{min} = -1.15 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: None
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Te1	0.5000	0.5000	0.0000	0.0099	
Te2	0.0000	1.0000	0.0000	0.0106	
S1	-0.24900 (9)	-0.49139 (17)	-0.2352 (2)	0.0124	
Na1	-0.1448 (2)	0.0149 (2)	-0.3454 (2)	0.0181	0.2590
N1	-0.1448 (2)	0.0149 (2)	-0.3454 (2)	0.0181	0.7410
Na2	-0.3539 (2)	0.0047 (2)	-0.0920 (2)	0.0229	0.1300
N2	-0.3539 (2)	0.0047 (2)	-0.0920 (2)	0.0229	0.8700
01	0.5309 (3)	0.5871 (6)	-0.1453 (6)	0.0241	
O2	0.4606 (3)	0.2370 (5)	-0.0661 (5)	0.0232	
O3	0.3647 (2)	0.6044 (5)	-0.0656 (5)	0.0174	
O4	-0.1350 (2)	1.0859 (5)	-0.0867 (5)	0.0188	
05	0.0167 (2)	1.2375 (5)	0.1011 (5)	0.0150	
O6	0.0519 (2)	1.1390 (5)	-0.1165 (6)	0.0174	
O7	-0.1698 (3)	-0.5105 (5)	-0.1149 (6)	0.0221	
08	-0.3350 (2)	-0.6287 (5)	-0.2355 (5)	0.0160	
09	-0.2843 (2)	-0.2792 (5)	-0.2508 (5)	0.0202	
O10	-0.2079 (3)	-0.5499 (6)	-0.3357 (6)	0.0213	
H1	0.5496	0.4942	-0.1631	0.0500*	
H2	0.4006	0.2489	-0.1288	0.0500*	
Н3	0.3748	0.7041	-0.1257	0.0500*	
H4	-0.1328	1.2273	-0.0942	0.0500*	
Н5	-0.0379	1.3302	0.0591	0.0500*	
Н6	0.1037	1.0563	-0.1347	0.0500*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te1	0.00995 (8)	0.00995 (8)	0.00995 (8)	0.00017 (8)	0.00296 (8)	0.00017 (8)
Te2	0.01064 (8)	0.01064 (8)	0.01064 (8)	0.00017 (8)	0.00316 (8)	0.00017 (8)
S1	0.0128 (9)	0.0116 (8)	0.013 (3)	0.0000 (4)	0.0042 (12)	0.0010 (8)
Na1	0.0213 (2)	0.0181 (2)	0.0197 (2)	0.0029 (2)	0.0133 (2)	0.0000 (2)
N1	0.0213 (2)	0.0181 (2)	0.0197 (2)	0.0029 (2)	0.0133 (2)	0.0000 (2)
Na2	0.0233 (2)	0.0199 (2)	0.0285 (2)	-0.0014 (2)	0.0122 (2)	0.0024 (2)
N2	0.0233 (2)	0.0199 (2)	0.0285 (2)	-0.0014 (2)	0.0122 (2)	0.0024 (2)
01	0.0316 (18)	0.030 (2)	0.016 (2)	0.0127 (15)	0.015 (2)	0.009 (2)
O2	0.0272 (16)	0.0145 (12)	0.020 (4)	0.0006 (12)	-0.006 (2)	-0.0080 (17)
O3	0.0103 (11)	0.0209 (16)	0.021 (4)	0.0017 (11)	0.0045 (16)	0.003 (2)
O4	0.0143 (11)	0.0161 (16)	0.023 (4)	0.0017 (11)	0.0005 (15)	0.0052 (19)
O5	0.0194 (15)	0.0176 (14)	0.008 (3)	0.0032 (12)	0.0042 (19)	-0.0027 (16)
O6	0.0234 (16)	0.0191 (15)	0.014 (3)	0.0045 (13)	0.0119 (19)	0.0034 (17)
O7	0.0190 (18)	0.0192 (18)	0.022 (4)	-0.0001 (12)	-0.004 (2)	0.002 (2)
08	0.0157 (15)	0.0212 (16)	0.013 (5)	-0.0030 (12)	0.006 (2)	0.002 (2)
O9	0.0167 (16)	0.0146 (13)	0.026 (5)	0.0022 (12)	0.001 (2)	0.001 (2)
O10	0.0189 (18)	0.0247 (16)	0.026 (4)	-0.0032 (14)	0.015 (2)	-0.005 (2)

Geometric parameters (Å, °)

Te1—H1 ⁱ	2.146	O4—H4	0.937
Te1—O3 ⁱ	1.916 (3)	O5—H5	0.978
Te1—O2 ⁱ	1.905 (4)	O6—H6	0.963
Te1—O1 ⁱ	1.903 (6)	Na1—O6 ⁱⁱⁱ	2.873 (4)
Te1—O1	1.903 (6)	Na1—O4 ^{iv}	2.937 (6)
Te1—O2	1.905 (4)	Na1—O5 ^v	2.947 (4)
Te1—O3	1.916 (3)	Na1—O3 ^{vi}	2.950 (4)
Te1—H1	2.146	Na1—O7 ^{vii}	2.978 (7)
Te2—O5 ⁱⁱ	1.915 (4)	Na1—O10 ^{viii}	3.008 (4)
Te2—O4 ⁱⁱ	1.914 (3)	Na1—O9	3.120 (4)
Te2—O6 ⁱⁱ	1.904 (5)	Na1—O6 ^{iv}	3.267 (6)
Te2—O4	1.914 (3)	Na1—O5 ^{ix}	3.278 (5)
Te2—O5	1.915 (4)	Na2—O9	2.938 (5)
Te2—O6	1.904 (5)	Na2—O8 ^{viii}	2.966 (4)
S1—O7	1.486 (6)	Na2—O4 ^{iv}	3.029 (4)
S1—O8	1.485 (3)	Na2—O10 ^x	3.037 (7)
S1—O9	1.474 (3)	Na2—O2 ^{xi}	3.050 (4)
S1—O10	1.460 (6)	Na2—O2 ^{xii}	3.063 (5)
O1—H1	0.715	Na2—O1 ^{xiii}	3.144 (5)
O2—H2	0.924	Na2—O3 ^{ix}	3.164 (5)
О3—Н3	0.985	Na2—O1 ^{vi}	3.305 (6)

O3 ⁱ —Te1—O2 ⁱ	92.32 (15)	O4 ⁱⁱ —Te2—O6 ⁱⁱ	89.85 (18)
O3 ⁱ —Te1—O1 ⁱ	89.1 (2)	O5 ⁱⁱ —Te2—O4	90.07 (16)
O2 ⁱ —Te1—O1 ⁱ	92.4 (2)	O4 ⁱⁱ —Te2—O4	179.994
O3 ⁱ —Te1—O1	90.9 (2)	O6 ⁱⁱ —Te2—O4	90.15 (18)
O2 ⁱ —Te1—O1	87.6 (2)	O5 ⁱⁱ —Te2—O5	179.994
Ol ⁱ —Tel—Ol	179.994	O4 ⁱⁱ —Te2—O5	90.07 (16)
H1 ⁱ —Te1—O2	103.413	O6 ⁱⁱ —Te2—O5	88.98 (19)
O3 ⁱ —Te1—O2	87.68 (15)	O4—Te2—O5	89.93 (16)
O2 ⁱ —Te1—O2	179.994	O5 ⁱⁱ —Te2—O6	88.98 (19)
Ol ⁱ —Tel—O2	87.6 (2)	O4 ⁱⁱ —Te2—O6	90.15 (18)
O1—Te1—O2	92.4 (2)	O6 ⁱⁱ —Te2—O6	179.994
H1 ⁱ —Te1—O3	79.615	O4—Te2—O6	89.85 (18)
O3 ⁱ —Te1—O3	179.994	O5—Te2—O6	91.02 (19)
O2 ⁱ —Te1—O3	87.68 (15)	O7—S1—O8	108.7 (3)
Ol ⁱ —Tel—O3	90.9 (2)	O7—S1—O9	108.6 (3)
O1—Te1—O3	89.1 (2)	O8—S1—O9	110.21 (19)
O2—Te1—O3	92.32 (15)	O7—S1—O10	110.6 (3)
O5 ⁱⁱ —Te2—O4 ⁱⁱ	89.93 (16)	O8—S1—O10	108.6 (3)
O5 ⁱⁱ —Te2—O6 ⁱⁱ	91.02 (19)	O9—S1—O10	110.1 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*, -*y*+2, -*z*; (iii) -*x*, *y*-3/2, -*z*-1/2; (iv) *x*, *y*-1, *z*; (v) *x*, -*y*+3/2, *z*-1/2; (vi) -*x*, *y*-1/2, -*z*-1/2; (vii) *x*, -*y*-1/2, *z*-1/2; (viii) *x*, *y*+1, *z*; (ix) -*x*, -*y*+1, -*z*; (x) *x*, -*y*-1/2; *z*+1/2; (xi) *x*-1, *y*, *z*; (xii) -*x*, -*y*, -*z*; (xiii) *x*-1, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2···O9 ^{xiv}	0.924 (4)	1.787 (4)	2.700 (6)	169.2 (2)
O3—H3…O8 ^{xv}	0.985 (5)	1.871 (5)	2.799 (7)	155.7 (2)
O4—H4···O7 ^{xvi}	0.937 (3)	1.798 (3)	2.706 (7)	162.4 (2)
O6—H6…O10 ^{xv}	0.963 (4)	1.706 (4)	2.658 (6)	169.5 (3)
N1—····.O6 ⁱⁱⁱ			2.873 (4)	
N1—····.O4 ^{iv}			2.937 (6)	
N1—O5 ^v			2.947 (4)	
N1—····.O3 ^{vi}			2.950 (4)	
N1—····.O7 ^{vii}			2.978 (7)	
N1—····.O10 ^{viii}			3.008 (4)	
N2—09			2.938 (5)	
N2—O8 ^{viii}			2.966 (4)	
N2—O4 ^{iv}			3.029 (4)	
N2—O10 ^x			3.037 (7)	
N2—O2 ^{xi}			3.050 (4)	
N2—O2 ^{xii}			3.063 (5)	

Symmetry codes: (xiv) -*x*, *y*+1/2, -*z*-1/2; (xv) -*x*, *y*+3/2, -*z*-1/2; (xvi) *x*, *y*+2, *z*; (iii) -*x*, *y*-3/2, -*z*-1/2; (iv) *x*, *y*-1, *z*; (v) *x*, -*y*+3/2, *z*-1/2; (vi) -*x*, *y*-1/2, -*z*-1/2; (vii) *x*, -*y*-1/2, *z*-1/2; (viii) *x*, *y*+1, *z*; (*x*) *x*, -*y*-1/2, *z*+1/2; (xi) *x*-1, *y*, *z*; (xii) -*x*, -*y*, -*z*.

Fig. 2

